Beyond structure: (in)formed finding of new shell morphologies

Hulda Jonsdottir
Education degree
School of Architecture
Study programme
Computation in Architecture
VELUX Dagslyslegat - hædrende omtale

Many things are important to designers besides structure. The current set of tools we have for shell design focuses on finding optimal structural forms unrelated to the light, spatial or aesthetic qualities of the shell. With this project I introduce these other design performances to those tools and through my research look at their relationship and interdependency. I investigate the introduction of light in shell design and how to control and modulate it through physical patterns using computational techniques. More specifically the project explores meshing strategies for developing a 3D printed component system for shell structure, based on integration of lighting condition and structural performance. 

For me light is beyond structure.


I have developed a design approach that links the consideration of light with the consideration of shell structure. There are attempts of this for example in Frei Otto‘s Stuttgart train station, where the structural form funnels light into the space. This is limited to one repeated quality of light. I have extended this by integrating modulation of particular qualities of Nordic light, which is the diffused transmissive light and the spotlight.

"[As designers] a) we have a sense for aesthetics b) we have the right to use it c) we are allowed to mention our opinion d) and we can find and express it in our projects."
Inspiration for my thesis comes from Heinz Isler. - It followed him throughout his lifetime work.
The art of structural design - SWISS ENGINEERS - HEINZ ISLER (2013) Prinston University Art Museum /

Full project portfolio - Beyond Structure

System overview

How to use the system of the integration of light and structure as a designer with a sports design senario. Whereas shells are traditionally involved with sports programs and  these selected sport senarios all require a very specific light quality.

Step 01: Map desired lighting conditions according to program requirements. Here we are working with three programs that all require very specific lighting condition. That is the bright diffused light flow for the Royal Tennis, the gradient light for the shooting range and the spotlight for the table tennis. 

Step 02: Apply spring length according to desired lighting condition. Where more light is desired, the springs have less stiffness and therefore it generates higher curvature, that is a stronger geometric shape.

Then the mesh springs are evened with a meshmashine after the form-finding process.

Using the even mesh triangles we can find their dual. The triangles generate the component face and the dual generates the boundary  internal geometry. 

Step 03: Finally we apply the appropriate component according to the desired lighting condition and its structural dependency.

The Nordic Light
The system - component and assembly
Component application according to desired lighting condition

Velux Dagslyslegat - hædrende omtale

Hulda Jónsdóttir modtog hædrende omtale for sit afgangsprojekt. Juryen sagde bl.a.: 

"I projektet Beyond Structure er der arbejdet med undersøgelse af hvordan dagslys spredes gennem en bygget geometri. Strukturen er formet gennem digital parametrisk design, fysiske prøver og visuelle undersøgelser, hvor strukturens tæthed og retning skaber et indre landskab af forskellige dagslys konditioner. "